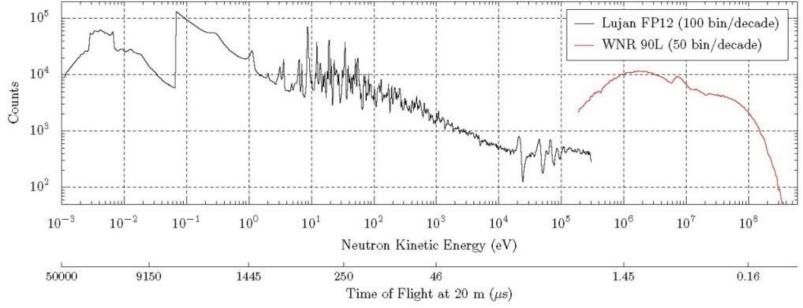



### The LANSCE Facility



Six targets enable a broad range of programmatic and fundamental research

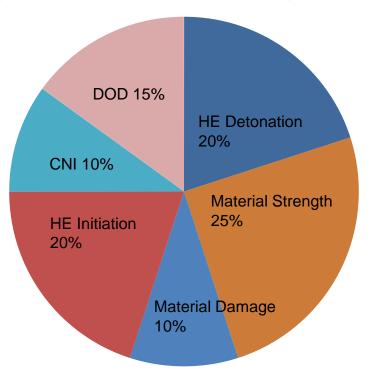



- Proton radiography
  - High explosives
  - Shock physics
  - Materials in extremes
- High-energy neutrons (WNR)
  - Nuclear physics (fission process)
  - Neutron radiography (high-energy)
  - Semiconductor
- Low-energy neutrons (Lujan Center)
  - Nuclear physics (fission process)
  - Material science
  - Neutron radiography (epithermal)
- Ultra-Cold Neutrons
  - Neutron lifetime
  - Beta-decay asymmetry parameters
  - Neutron electric dipole moment
- Isotope Production (IPF)
  - Largest source of Sr-82 for cardiac imaging (30,000 patients/month)
  - DOE NP funding \$5.1M AIP



### 11 Orders of Magnitude in Neutron Los Alamos **Energy: meV to 800 MeV**





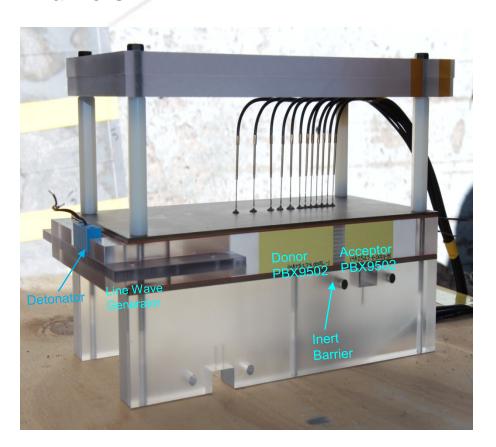


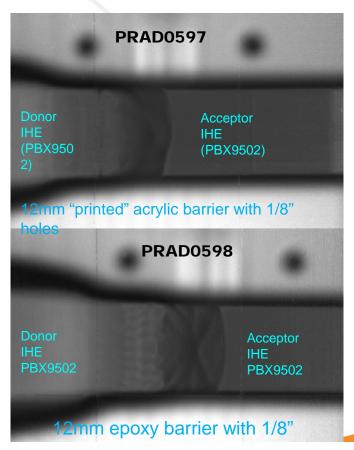

### 2014-2015 Run Cycle: pRAD



pRad performed 20 dynamic experiments in the run cycle




- B61-LEP: Understand performance of IHE
- Validation experiment for future subcritical experiment
- Focused physics experiments
  - Richtmyer-Meshkov
     Instabilities
  - High explosives studies
  - Solidification process




#### **HE Burn Studies**

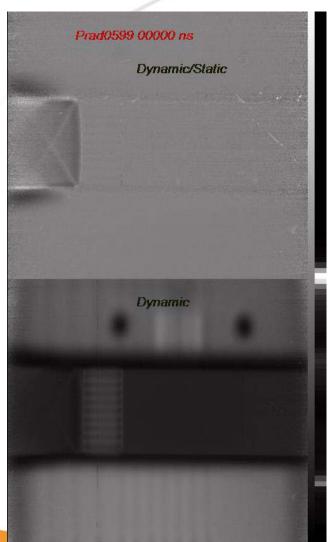


### Study the Propagation of Detonation and Shock waves through Inert Barriers



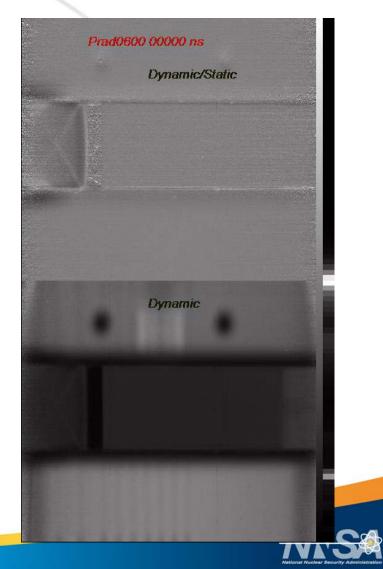


**Shot Assembly** 


UNC

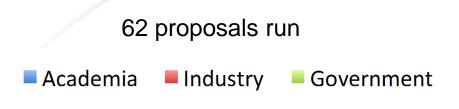
The structure of the shock waves in the detonation by products through an epoxy barrier and through a "printed" acrylic barrier appear quite different. The two barrier materials have identical dimensions and geometry and similar densities.

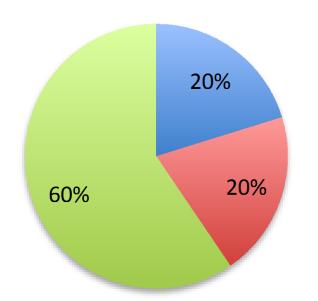
### **PRAD High Explosive Studies**




14 mm epoxy barrier with 1.8 mm holes




5 mm Tantalum barrier





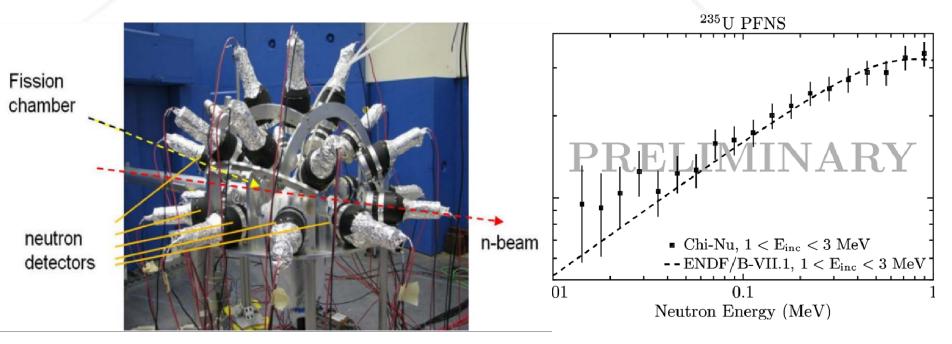

### 2014-2015 Run Cycle: Nuclear Science (WNR and Lujan Center)







- Return to 100 Hz operations (2.5x more neutrons)
- Chi-Nu: prompt fission neutron spectrum
- TPC: total fission cross section to 1%
- SPIDER: fission mass yields
- TKE: kinetic energy of fission products
- DANCE: isomers in 239Pu






### 2014-2015 Run Cycle: Nuclear Science (WNR and Lujan Center)

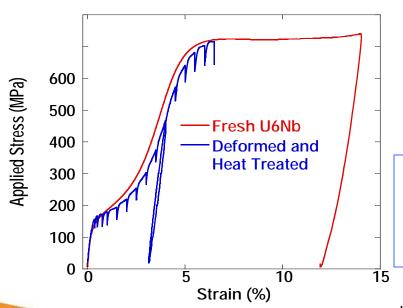


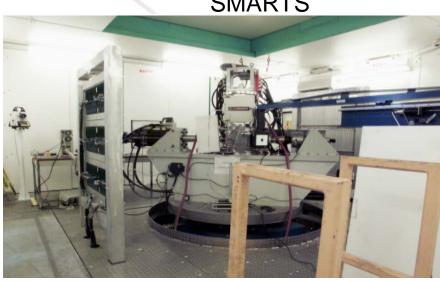
Chi-Nu PFNS of <sup>235</sup>U



<sup>239</sup>Pu data this run cycle




### 2014-2015 Run Cycle: Materials Science (Lujan Center)



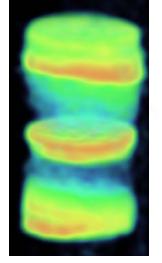

#### **SMARTS**

- First run cycle after BES pullback
- Transition to programmatic work

#### Goal: lay scientific understanding for re-use of U6Nb parts

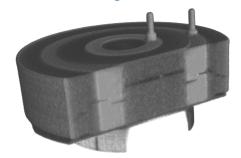





Measurements on predeformed U6Nb demonstrate that microstructure (and thus ductility) is recovered by a simple heat treatment to 800C.



### **Neutron Radiography**

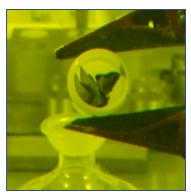

- Low-energy neutron absorption spectroscopy
  - Isotopic imaging of fuel rods (NE)
- High-energy neutron radiography
  - Enhanced surveillance
  - Use energy resolved imaging to study performance of Livermore design for noninvasive surveillance





Density of Tungsten in UO<sub>2</sub> fuel rod

Radiography Phantom CT - 3D Rendering and slice






### **Medical Isotope Production at LANSCE**

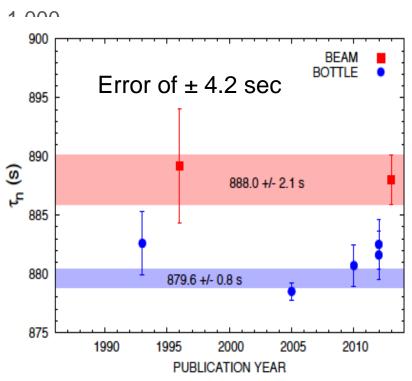


- LANL continues as the largest domestic supplier of Sr-82 for cardiac imaging (~ 30,000 patients/mo)
- Produce Ge-68 for cancer imaging, an emerging application for thousands of patients
- Completed FDA validation (irradiation and chemistry demonstration) of Rb metal targets for Sr-82, with an ~1.4 increase in yield
- >160 shipments this year to medical, industrial, and academic customers
- AIP approved to enhance the IPF beam transport system (\$5.1M effort)



Small scale demonstration of isotopes for cancer therapy including actinium-225 (the most promising isotope for targeted alpha therapy,) antimony-119 (auger electrons) and rhenium-186g (beta therapy)




National Nuclear Security Administration
Silida 11





 First (preliminary) neutron lifetime measurement using LANL designed magneto-gravitational trap

Consistent with PDG value 880 ± 1.1s







### 2015-2016 Run Cycle



- LANSCE continues to attract high quality proposals and is again oversubscribed for beam time
- ~200 proposals submitted for beam time at pRAD, WNR, and Lujan Center
- We continue to provide valuable data to the Science Campaigns and the DSW program
- We continue to attract strong fundamental science proposals



#### **LANSCE Outlook**



- LANSCE now has a stable funding model for the next 5 years
- The budget will enable 24/7 operations, replacement of the final high-power amplifier, and investments necessary to ensure long-term reliability
- Lujan Center plans:
  - Run 3 material science flight paths: SMARTS, HIPPO, and ASTERIX
  - Run 3 nuclear physics flight paths: DANCE, FP-5, and FP-12
- Operate LANSCE into the MaRIE era



### Matter-Radiation Interactions in Extremes: MaRIE



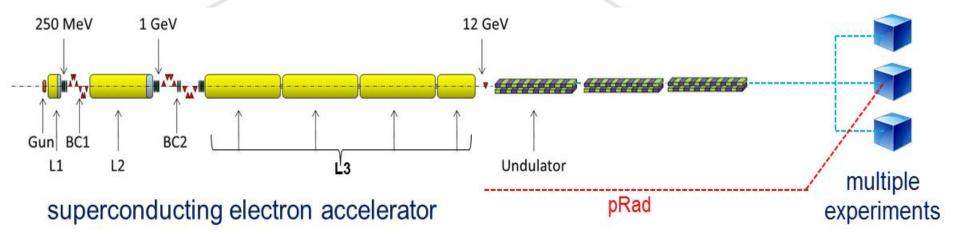
- Future stockpile stewardship needs will require the ability to predict the performance of new materials in extreme environments in the absence of nuclear testing
- Understanding the behavior of materials at the meso-scale is needed to predict performance
  - Need to observe the dynamic evolution of polycrystalline materials at the granular and sub-granular level
- With MaRIE we will be able to create a material and probe its response in extreme environments with multiple probes: xrays, protons, electrons, and optical photons
- Goal is to enable the creation of new materials with controlled functionality.
- Intimately coupled with Exa-scale computing



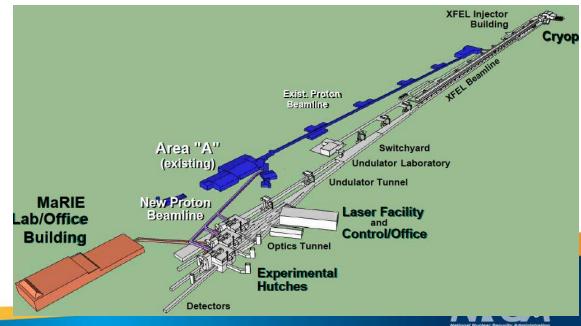
### What is MaRIE?



- MaRIE 1.0 will provide the world's highest energy (42-keV) XFEL with GHz (few pulses) repetition;
- A Making, Measuring, and Modeling Materials (M4) Facility for materials synthesis and characterization with high-performance computational co-design focused on the mesoscale; and
- A Multi-Probe Diagnostic Hall (MPDH) coupling hard, coherent, brilliant x-ray photons with charged particle radiographic tools in time-dependent extremes.

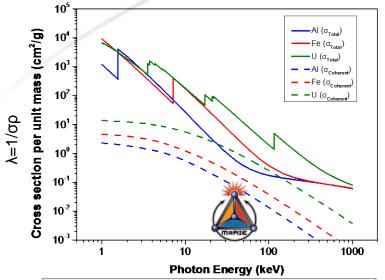


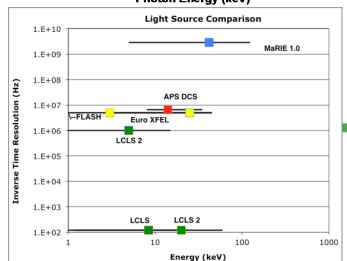

MaRIE facility definition derives from "First Experiments" functional requirements and identified performance gaps.




### MaRIE Pre-Conceptual Design

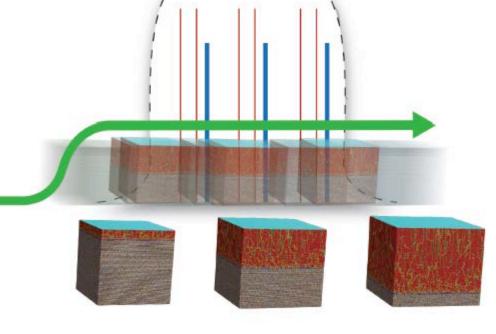






The pre-conceptual reference consists of a 12-GeV electron linac feeding a 42 keV XFEL. Located on the the LANSCE mesa it can leverage the capabilities of the existing proton/neutron facilities.



## To Time Resolve at the Mesoscale Requires: X-rays (High Energy, Coherent, Brilliant, High Repetition-Rate) and Multiple Probes at Multiple Scales








The MaRIE 1.0 XFEL is harder and higher repetition rate than peer photon sources

MaRIE will multiplex 42-keV x-ray photons (red), 12-GeV electrons (blue), and 0.8-GeV protons (green) during a single dynamic event







- This meeting is about you the Users of LANSCE
- What capabilities do you need over the next 5 years?
- Are there other flight paths and/or probes that are needed?
- Discuss a possible SSAA Center of Excellence for Materials Science based on research at LANSCE.
- NNSA is expected to issue a call in Spring/Summer of 2016 with funding in 2017.



### Backup



## "First Experiments" define mission-driven functional requirements and reveal facility performance gaps

| NЛ  | issi | n | N  | 0 | М |
|-----|------|---|----|---|---|
| 101 |      |   | IV | _ |   |

#### **First Experiments**

#### **Functional Requirements**

#### Performance Gaps

#### **Dynamic Materials Performance**

- Multiphase High Explosive Evolution
- Dynamic Performance of Plutonium and Surrogate Metals and Alloys
- Turbulent Material Mixing in Variable Density Flows

#### **Process Aware Manufacturing**

- Controlled Solidification and Phase Transformations
- Predicting Interfacial Microstructure and Strain Evolution
- High Explosive Functionality by Design

#### **Environments**

- Dynamic pressure: 4-200 GPa
- Strain rate: 10<sup>-3</sup>-10<sup>7</sup> s<sup>-1</sup>
- Stress loading > 200 ns
- HE < 500g (< 30g with SNM)</li>
- Temperature rate 10<sup>5</sup> °C/sec

#### Transient Multi-frame Measurements

#### **Imaging**

- 0.1–1 μm, < 0.3 ns res over</li>
   0.1–1 mm
- 0.1–1 nm, < 1 μs res over</li>
   10 μm
- 1% density accuracy

#### Diffraction

- Defects: 1 nm res over 10 μm
- Phase: 1–2 μm res over 100 μm
- Lattice Strain: 10<sup>-5</sup>–10<sup>-3</sup> over 10's of μm

#### Thermo-Physical

- Temperature: 10 μm and 10–100 ns res
- Chemistry 1 μm; < 100 fs

#### Synthesis with in situ

#### Characterization

- Single crystals and 2D interfaces
- Tailored microstructures with control of grain size, phase, and composition
- · HE and actinides, metal alloys
- Real-time feedback during processing

#### **Integrated Driver Suite**

Repetitive 42-keV coherent x-ray source with 10<sup>10</sup> photons in < 1ps focused to 1-100 mm

Dynamic charged particle imaging with 12-GeV electrons and 0.8-GeV protons

Synthesis, characterization, and processing with control of impurities and defects

Integrated co-design and data visualization



# Stockpile Stewardship Academic Alliance: Program Objectives



- Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions, low-energy nuclear science, high-energy density physics, and radiochemistry
- Provide opportunities for intellectual challenge and collaboration by promoting scientific interactions between the academic community and scientists at the DOE/NNSA laboratories
- Develop and maintain a long-term recruiting pipeline to the DOE/NNSA laboratories by increasing the visibility of the DOE/NNSA scientific activities to U.S. academic communities

